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Shortcuts in Cosmological Branes

Elcio Abdalla,’? Adenauer G. Casali,!
and Bertha Cuadros-Melgar!

We aim at gathering information from gravitational interaction in the Universe, at ener-
gies where quantum gravity is required. In such a setup a dynamical membrane world in
a space-time with scalar bulk matter described by domain walls, as well as a dynamical
membrane world in empty Anti de Sitter space-time, is analyzed. We later investigate
the possibility of having shortcuts for gravitons leaving the membrane and returning
subsequently. In comparison with photons following a geodesic inside the brane, we
verify that shortcuts exist. For late time universes they are small, but for some primor-
dial universes they can be quite effective. In the case of matter branes, we argue that
at times just before nucleosynthesis the effect is sufficiently large to provide correc-
tions to the inflationary scenario, especially as concerning the horizon problem and the
Cosmological Background Radiation.
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1. INTRODUCTION

Although the Standard Model of particle physics has been established as the
uncontested theory of all interactions down to distances of 10~!7 m, there are good
reasons to believe that there is a new physics arising soon at the experimental level
(Gasperini and Veneziano, 2002). On the other hand, string theory provides an
excellent background to solve long-standing problems of theoretical high-energy
physics. It is by now a widespread idea that M-theory (Polchinski, 1998) can be a
reasonable description of our Universe. In the field theory limit, it is described by a
solution of the (eventually 11-dimensional) Einstein equations with a cosmological
constant by means of a 4-dimensional membrane. In this picture only gravity
survives in the extra dimensions, while the remaining matter and gauge interactions
are typically four-dimensional.
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This avenue presents us a possibility of tackling with two different problems
at the same time, namely, a means of testing the up-to-now far from experimental
and observational data string theory, and a theoretical framework to cosmology,
whose theoretical background needs a full understanding of quantum gravity to
correctly deal with the puzzling question of the initial singularity.

General relativity always evaded quantization. Einstein gravity is a nonrenor-
malizable theory at a low loop level ('t Hooft and Veltman, 1974), and atempts to
include supersymmetry in order to cancel divergencies only postponed the problem
to a higher loop (van Nieuwenhuizen, 1981). String Theory showed a way from its
very basis of how to successfully quantize gravity. At the same time, and especially
after the discovery of the anomaly cancellation mechanism (Green ef al., 1986),
now even sometimes quoted as the first superstring revolution, strings are taken as
quasi-unique in their description. Moreover, with the discovery of the duality sym-
metry such a uniqueness has been further enhanced (Witten, 1995), leading to the
concept of a universal theory, the so-called M-theory largely unknown, describing
an 11-dimensional misterious, master theory, mother of all string descriptions on
their side related by duality and containing in their field theory limit a version of
11-dimensional supergravity (Horava and Witten, 1996a).

The key question however lies on what can turn a higher dimensional theory
into something realistic, describing our four-dimensional world. Some hints are
known since almost a century and have been used before in the context of super-
gravity. It is the Kaluza—Klein approach (Kaluza, 1921; Klein, 1926a,b), where
extra dimensions are compactified being curled up in such a size that they cannot
be observed in the daily life, that, in spite of being appealing, has encountered
several problems being still an active field of inquiry. Still there are proposals
where some of these dimensions are large enough to be probed by microphysics
(Antoniadis ef al., 1998; Arkani-Hamed et al., 1998).

Recently, Horava and Witten (1996b) considered M-theory in a rather intrigu-
ing situation. It has been argued that our universe can be seen as a solution of a
higher dimensional theory. Strings can be open or closed. The closed string sector
contains gravtiy and further components. The open string sector contains matter
fields isolated into their extremities. In this proposed picture the open string ex-
tremities containing the matter fields are restrained to live in the physical universe,
which in Horava and Witten’s proposal is described by a membrane.

Later on, Randall and Sundrum (1999a,b) described the universe as a solution
of higher dimensional field equations with boundary conditions describing the
membrane. As a result, they obtained a space with full-fledged extra dimensions
but with a warp such that the effective penetration of gravitons into the extra
dimensions is small, and the effective gravitational interaction is observationally
four-dimensional. In this picture there is a possibility that gravitational fields, while
propagating out of the brane, speed up reaching farther distances in smaller time
as compared to light propagating inside the brane, a scenario that for a resident of



Shortcuts in Cosmological Branes 803

the brane implies shortcuts (Abdalla et al., 2002a; Caldwell and Langlois, 2001;
Chung and Freese, 2002a,b; Cséki et al., 2001; Ishihara, 2001).

It is our aim in this work to further develop these ideas in the case of an FRW
brane Universe (Binetruy et al., 2001; Cséki et al., 2001). The subject was devel-
oped until now from the point of view of the brane (Abdalla et al., 2002c), where all
time dependence is embedded in the bulk metric written in gaussian coordinates.
The price paid is the complicatd form of the bulk metric and, consequently, the
complicated behavior of geodesics in the bulk. However, if we treat the problem
from the point of view of the bulk, where the brane evolves in a nontrivial way in
a static AdS background, we can construct explicity the causal structure of null
geodesics leaving and subsequently returning to the brane. As it turns out, short-
cuts are common, although harmless at the present days (the delay is vanishingly
small), but could be large in the era before nucleosynthesis.

Moreover, one of the main goals of string theory nowadays is to prove itself
able to cope with experimental evidences. Branes have been shown to be useful
tools to understand the physics of strings and M-theory (Nojiri et al., 2002; Nojiri
and Odintsov, 2001; Wang et al., 2002). As it has also recently been pointed out
(Gierdice et al., 2002), brane Universes, such as the one described above, could
imply the existence of relics of the extra dimensions in the cosmic microwave
background. Unfortunately, recent developments with inflation guided by a scalar
field on the brane indicate that the consistency equation is preserved (Huey and
Lidsey, 2001; Liddle and Taylor, 2002). In this work however, we show that if
inflation took part on the brane, the causal structure is definitely changed by those
gravitational shortcuts, possibly leading to a nonusual period of causal evolution of
scales. This could be responsible for distinct predictions in the cosmic microwave
background structure for inflationary models.

This scenario has been proposed as an actually realizable possibility (Abdalla
and Casali, 2002b; Chung and Freese, 2002; Dvali and Tye, 1999; Kashru et al.,
2003; Moffat, 2002; Quevedo, 2002; Starkman et al., 2001a,b). In Abdalla and
Casali (2002b), it has been shown that in some scenarios shortcuts are very difficult
to be detected today because of the extremely short delay of the photon as compared
to the graviton coming from the same source.

2. FURTHER MOTIVATIONS AND BRANE COSMOLOGY

The Planck mass is the natural scale where string effects become important.
However, it is not possible to achieve such an energy level in particle physics
accelerators. Nonetheless, as we mentioned above, cosmology may provide an
alternative laboratory for string theory. From the 1980s several authors tried to
analyze the kind of cosmology arising from string-inspired models, which are
essentially general relativity in higher dimensions together with scalar and tensor
fields. In case we also introduce the brane concept, a consistent picture of the
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brane universe is achieved, and we can describe the evolution of the universe by
means of solutions of the Finstein field equations in higher dimensions with a
four-dimensional membrane.

Extensive use of specific properties of strings, such as the T-duality, may
provide simple explanations of several properties of the universe, although of
course an observational check is missing. Nonetheless, a pre-Big Bang scenario
can be described providing a very sophisticated physical picture of the universe.
Several solutions also indicating inflation have been obtained in what is now usually
called brane cosmology.

It is thus essential to provide means of comparing those results to some ob-
servational data, which is the largest difficulty in string theory. The best proposal
is to use the extremely sophisticated data of the Cosmic Microwave Background,
first obtained from the pioneering COBE satelite and more recently by the detailed
analysis of WMAP. Such observations are opening the avenue for precision cos-
mology, and results with error bars less a percent are now available. In such a case
one can compare the predictions of inflationary models with observations, and even
quantitatively distinguish between different inflationary scenarios with a chance of
favoring or discarding string-inspired models of cosmology or brane cosmology.

The definition of a scalar potential directly from string theory has been an
important issue. In Dvali and Tye (1999), an attempt was made to derive the scalar
interaction from a brane-brane interaction. This kind of approach reviewed in
Quevedo (2002), has been very recently taken over in Kashru ez al. (2003). A few
different and new forms for the inflaton potential have been derived, showing that at
least one can hope to derive inflationary models directly from the properties which
characterize string theory and its consequences, namely M-theory and branes.

3. THE JUNCTION CONDITIONS

The formulation of proper junction conditions at surfaces of discontinuity
is a fundamental problem in gravitational theory. Well-known examples are the
Schwarzschild and Oppenheimer—Snyder problems, which require the junction of
the interior field of a static or collapsing star to the exterior vacuum field.

In Newtonian theory the problem is directly solved by imposing the standard
continuity and jump conditions connecting the potential and its first derivatives
across the surface. In general relativity, however, the gravitational potential is
determined not only by the smoothness of physical conditions but also by the
smoothness of the coordinates we are using to describe space-time.

A pioneering work on these subjects was made in 1922 by Lanczos (1922,
1924), on which Israel (1966, 1967) based his landmark formalism 40 years later.
Independent of these works, Darmois (1927) derived junction conditions for the
special case of a boundary surface, i.e., a surface through which both the metric and
the extrinsic curvature tensors are continuous. All these ideas are now known as
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the Darmois—Israel junction/thin-shell formalism, which has found wide applica-
tion in general relativity and cosmology, including further studies of gravitational
collapse, the evolution of bubbles and domain walls in a cosmological setting,
wormholes and more recently in brane cosmology.

In this section we review the junction formalism as it was first derived by
Israel. We also derive the Darmois-Israel conditions from the gravitational action
in the context of D-dimensional theories and give an alternative approach using
distribution theory.

3.1. The Formalism

Consider a spacetime M (pseudo-Riemannian manifold with signature (— +
-+++)) with metric g,g(x") in the coordinate system (x”). The absolute derivative
of a smooth vector function A defined on a curve on this spacetime parametrized
by ¢ is given by

« _ 0A% 3 dx?
VA% = o + A'TS, i (1)

Let X be a smooth hypersurface in M with metric g;;(§¢) in the coordinates
&¢, which separates M into two four-dimensional manifolds M~ and M ™, each
containing X as part of its boundary.

The unit 4-normal n to this hypersurface in M labels X as time-like (space-
like) fore(n) =n-n = —1 (1).

We define a natural frame of three linearly independent tangent vectors e(;,
associated with the intrinsic coordinates &' as

ax“

BZ) = 8—$i’ 2
which gives the induced metric on X as
ax® oxP
8ij = €u) - &) = & @gaﬁ- (3)

The intrinsic covariant derivative of A with respect to &' is the projection of the
vector dA/d&/ onto X,

0A dA
ij = €g) 087 ~ g AN 4)
We see that intrinsic covariant differentiation does not depend on the nature of the
embedding. Properties of a nonintrinsic character enter when we consider the way
in which ¥ “bends” in M. This is measured by the variations dn/d&' of the unit
normal,

/9" = Ke), 5)
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what defines the extrinsic curvature 3-tensor K;; of Z,

K,‘j =

on x® dxP 9%xY y 9x” dxh
e = = - —— Vg = —n,, — + Faﬂ -— . (6)
0E! o0&’ 0&J 0E19EJ 0&! 0&J

LetK;;, K ;]T be the extrinsic curvatures of X associated with its embeddings
nM-,MT.IfK ;7K ;jT, Y is called a singular hypersurface of order 1, surface
layer or thin shell. If K; = K;, X is called a hypersurface of higher order or
boundary surface.

The Darmois conditions for the joining of M~ and M™ through X are

(Darmois, 1927)

[gij]1=0, @)
[Kij1 =0, (®)

where [X] = X+ — X~ is the jump of X through the hypersurface .

A boundary surface satisfies both equations, while a thin shell only satisfies
(7). Condition (8) as it stands is ambiguous since the orientation of the 4-vector
field n has not been specified. The Israel formalism will require the normals in
M to point from M~ to M. We should stress that the majority of the existing
literature deals with spherical symmetry where the direction of the normal is clear,
but in more complicated cases great care must be taken.

The Israel formulation (Israel, 1966, 1967) of thin shells follows from the
Lanczos equation (Lanczos, 1922, 1924)

[Kij] — gij [Ki] = —87GSij, ®

or equivalently
1
[Kijl = =87G { Sy = 585 ) (10)

where §;; is the surface stress—energy tensor of X.

By regarding a thin shell as the limit of a layer of uniform finite thickness €
as € — 0, we can give a heuristic justification for the name surface stress—energy
tensor.

Let X7, X% be the two boundary surfaces separating the finite layer from
the regions M~, M*. In gaussian coordinates the equations of ¥~ and X% are
r=0,x!' =€

In terms of the extrinsic curvature tensor and in the gaussian system of coor-
dinates the Ricci tensor can be written as

oK;;
‘R = W’{Jrz,»j, (11)
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where
Zij ="Ri; — KK;j +2K'K ;. (12)
Integration of the Einstein field equations
1
Raﬁ =-8rG (Taﬂ — E&wT) . (13)
through the layer gives
€ 1 €
_SJTG/ (Tl, - Eg,'jT) dx! = [Kij] +/ Z,‘j dxl. (14)
0 0
In the limit € — O for fixed K I-; , K ;, K;; remains bounded inside the layer. Hence,
the integral of Z;; tends to zero. Comparing this result with (10), we see that
€
Sij = lim T;;dx". (15)
€—> 0

Thus, S;; is the integral of Einstein’s energy tensor through the thickness of the
layer.

3.2. Matching Conditions From the Action

We will consider now the problem of junction conditions in the context of
D-dimensional theories (Chamblin and Reall, 1999). To do this, we will introduce
the concept of domain wall. In a D-dimensional spacetime a domain wall can be
defined as an extended object with D — 2 spatial dimensions, which divides the
spacetime in different domains. Here we will use this term to make reference to
any D — 2 brane moving in D dimensions.

Let M be a D-dimensional manifold containing a domain wall X, which splits
M into two parts M~ and M *. The metric must be continuous everywhere, while
its derivatives must be continuous everywhere except on ¥. We will denote X+ as
being the two sides of X.

Varying the Einstein-Hilbert action in M* gives?

1
8Segn = —3 /i dP x/=hg"N nP (Vi Sgnp — V) 8guN)s (16)
>

where ny; is the unit normal pointing into M* and the induced metric on ¥ is
given by the tangential components of the projection tensor iy y = gyn — HyAN.
If we contract the quantity in parenthesis with n¥n™¥ n® it vanishes, so we can
replace gMV by MV,

The expression (16) contains a normal derivative of the metric variation,
which is discontinuous across X according to our initial hypothesis; therefore, the

3 For convenience we use units such that 87G = 1.
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contributions from M* will not necessarily cancel out. In this way, it is necessary
to add a Gibbons—Hawking boundary term (Gibbons and Hawking, 1977) on each
side of the domain wall to cancel out this term,

San = —/ dP~ ' x/=hK, (17)
E:t

with K being the trace of the extrinsic curvature of X, i.e., K = AMN K v, where
KMN = hf,[h]%Van
The variation of this new term is

1
8SgH = —/ dP='xv—=h <8K + EKhMN‘SgMN> , (18)
Ei
where

1 1
8K = —KM"V sgyn — "N n” (VM58NP - EVPBgMN> + EKHPHQ&?PQ-

(19)
Thus, the total variation is
1
8SEn + 8Sgn = / AP~V x/—h [EhMNanMSng + KMNSgun
):i
Lo v on 1 MN
—EKl’l n agMN — EK]’! ngN . (20)

Notice that the first term in the R.H.S. of (20) can be written as
WV pPVysgnp = V(WM n8gyp) + Kn"n"sgyuny — KMV 8gun,  (21)

where V is the covariant derivative associated to 4. We substitute this result into
(20) to get

1
8Sgn + VSgn = 3 / AP/ —=h(KMN — KhMNY§gyn. (22)
Z:t

The domain wall has an action given by
Saw = /2 dP~'x~/=h Lay, (23)
whose variation is
8 Saw =f2 AP XN =h "N g, (24)

where tMN = 2 S
= h
Shyn by ‘SgMNU "

is tangential to the domain wall such that we can replace
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The variation of the total action § = Sy + Sgu + Saw gives the Darmois-
Israel conditions

[Kuy — Khun]l = —tun, (25)
where the brackets stand for the jump of K through the domain wall X.

3.3. Junction Conditions From Distribution Theory

The Darmois-Israel conditions describe the motion of the domain wall through
the bulk. However, sometimes we describe a static brane. In this case the Darmois-
Israel conditions reduce to some relations between the energy density and pressure
on the brane and the coefficients of the bulk metric. An alternative derivation of
these relations can be done using distribution theory as follows.

Let us consider as an example a five-dimensional bulk metric of the form
(Binétruy et al., 2000a,b)

dsk) = —n’(t, y)di* + a>(t, y)yij dx* dx/ + b(t, y) dy?, (26)

where y;; represents a maximally symmetric metric on the 3-brane locatedin y = 0
with k = —1, 0, 1, parametrizing the spatial curvature.

The §tress-energy tensor appearing in Einstein’s equations G4p = K(ZS)Z; B
can be written as

Tap = Tap + Tas, 27)

where T 4 5 is the stress-energy tensor of the matter on the bulk (and possibly other
branes) which we do not need to specify here, and T4 corresponds to the matter
content on the brane which can be expressed quite generally as

Ty = @dlay P Py Ps P 0). (28)

The energy p and the pressure p are independent of the position on the brane
to recover standard cosmology on the brane.
From the metric (26) Einstein’s tensor components are found to be

G 3 a(a n b n? (a" N a (a b +kn2 29)
0= 1a\a b b2\ a al\a b al|’
G a? a (a n b n' +2a +2a” n”
YT p2 Vi a \a n b \n a n
a a n a b a n b i (30)
2)/” a a n a b a b Vije
b

~ na a a’
Gos =3<——+—— - —>, 31
na ab a
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5 / / / bz . . . P b2
Gsszs{“_(“_w_)__z(ﬁ(z_ﬁ)ﬂ)_k_z}, 32)
a a n n a a n a a

where a prime stands for derivative with respect to y and the dot means derivative
with respect to ¢.

To have a well-defined geometry, the metric must be continuous across the
brane. However, its derivatives with respect to y can be discontinuous in y = 0.
Thus, there is a Dirac delta function in the second derivatives of the metric with
respect to y. In general we will have

a"=a"+1a'18(y), (33)

where @” stands for the nondistributional part of the second derivative of a (the
ordinary second derivative), and [a'] is the jump of the first derivative across y = 0
defined by

[@1=d'(0") —d'0). (34)

The resulting terms with a delta function appearing in the Einstein tensor must
match the distributional part of the stress-energy tensor to satisfy Einstein’s equa-
tions. Comparing the Dirac delta functions in the components (29) and (30) of
Einstein’s tensor, we obtain the relations

Wl _ s
aobo 3 ’
n/ K2 (35)
]l _55p 120,
}’l()b() 3

where the subscript 0 means that the metric coefficients take their values on the
brane.

4. THE SCENARIOS

‘We shall consider two kinds of scenarios. First, a brane wall model based
on the exact solution of Einstein equations and boundary conditions, where the
brane is a so-called domain wall embedded in a space-time containing a singularity
(a type of black hole) and a cosmological constant. Subsequently we consider a
membrane of the Friedmann—Robertson—Walker type.

4.1. Brane Wall Model

In the first case we have a scenario described by the gravitational action in a
D-dimensional bulk with a scalar field (the bulk dilaton), a domain wall potential
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and a Gibbons-Hawking term (Gibbons and Hawking, 1977),

S = / dPx/—g ( R——(a¢>> —V(¢>)) / dP7 '/ =h((K1+ V(9)),
bulk dw

(36)
where ¢ is the bulk dilaton, K is the extrinsic curvature, V (¢) and V(qb)) are bulk
and domain wall potentials, respectively, and g and & denote the bulk and domain
wall metrics. The potentials are here

V(p) = Vo, (37)
V(g) = Vye*. (38)

We consider the bulk metric as being static and invariant under rotation,
ds* = —U@r)df +U@r) " dr* + R(r)*dQ2, (39)

where d Q,% is the line element on a D — 2-dimensional space of constant curvature
depending on a parameter k. We can also consider the brane to have a static metric,
in which case the solution of the bulk would be more complicated. The above metric
is supposed to have a mirror symmetry Z, with respect to the domain wall. Such a
symmetry will be used to impose the Darmois-Israel conditions. The variation of
the total action (36) including the Gibbons-Hawking term leads directly to

1 N
Kyy = —mv(@hw]w (40)

The extrinsic curvature can be computed as
KMN = h;l’l%Van, (41)
where the unit normal, which points into r < r(z), is
1
ny = —=——=0,-10...,0). (42)
v-%

Here a dot means derivative with respect to the bulk time ¢.
The ij component of (40) can be written as

R V@ [P
R~ 2D —-2U V- (43)

while the 00 component is

AN N/ (71 ’
(BY' ()t a
k) \®) = V@ &

Here a prime denotes derivative with respect to the extra coordinate r.
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The equation of motion for the dilaton obtained from the action (36), together
with (44), can be simultaneously solved with the Ansatz (39), leading to (Chamblin
and Reall, 1999)

= D=2 45
00) = . = oo 45)
R(™) = (@*(D —2) + DCVye ¥ o, (46)

where ¢, and C are arbitrary integration constants.

The motion of the domain wall is governed by the ij component of the
Darmois-Israel conditions (43). That equation can be written in terms of the brane
proper time T as

1 /dR\?
3 (E) + F(R)=0. (47)

The induced metric on the domain wall is Friedmann—Robertson—Walker and
(47) describes the evolution of the scale factor R(t). This equation is the same
as that one for a particle of unit mass and zero energy rolling in a potential F (R)
given by
F(R) = lUR’2 — ;021%2 (48)
2 8(D — 2)? '
Notice that the solution only exists when F(R) < 0.

From the induced domain wall metric, we find the relations between the time
parameter on the brane (7) and in the bulk (¢) as given by

U= (%)

dt = g,
U

so that

R Tt @
T )

’}.

where % = f]—f(f]—]’?)’l can be obtained from (47). Equation (49) describes the
motion of a domain wall in the static background as seen by an observer in the
bulk.

Consider two points on the brane. In general, there are more than one null
geodesic connecting them in the D-dimensional spacetime. The trajectories of
photons must be on the brane and those of gravitons may be outside. We consider
the shortest path for both photons and gravitons. For the latter, the geodesic equation

is the same as the one considered in Abdalla et al. (2002a), since the bulk metric
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1s static:

13U 1 u?
r'g+<,———_>r'§+§UU/_r_=O‘ 0
. g

Again a dot means derivative with respect to the bulk time ¢.

The solutions of (49) and (50) in terms of the bulk proper time ¢ were obtained
by means of a MAPLE program. In the next section we discuss the possibility of
shortcuts in the cases of the various solutions describing different Universes defined
by the domain wall solution.

4.2, Cosmological Brane Model

Later, we consider a scenario where the bulk is a purely Anti-de-Sitter space-
time of the form (Ida, 2000),

2 2 da® 2 552
ds® = h(a)dt” — — —a“dX”, (G2))
h(a)
with h(a) =k + ‘l’—zz, [ ~ 0.1 mm is the Randall-Sundrum lenght scale (Randall
and Sundrum, 1999a,b) and d X2 represents the metric of the three-dimensional
spatial sections with k = 0, 1,

2
11—k
The brane is localized at a,(t), where 7 is the proper time on the brane. The unit

vector normal to the brane is defined as (overdot and prime superscript denote
differentiation with respect to T and a, respectively)

n = ay(v)dt — i(t)da. (52)

dx? + r2[d6* + sin®(0)d¢?).

The normalization of n implies the relation between the bulk time ¢ and the brane
time 1,

h(ap)i* — aph™"(ap) = 1, (53)
and also the usual FRW expression for the distance on the brane,
ds* = h;jdx"dx’ = dt* — a}dz?. (54)
We also need the second fundamental form K;; = €/ e‘; Vuh,y, given by
K, = _%Zﬂ)i' (55)
Koo = —ayr’hi, (56)

Kpp = —apr? sin*(9)hi, (57)
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1 n

K. = W (ah + E) . (58)

We now use the Darmois-Israel conditions for a Z, symmetric configuration

(25).

1, 1
Kf.f=5'<<s> Sij_ghijs , (59)

with an isotropic distribution of matter,
Sij = erujuj — pr(hij — uju;). (60)

Thus, the following relations hold (Binétruy et al., 2000b; Bowcock et al., 2000;
Kraus, 1999)

dET
dt

a
—32(er + pr)s
ap

) 4 2
a o _ K€t

a% a? 36

Following Cséki et al. (1999) and Cline et al. (1999), we introduce an intrinsic
nondynamical energy density €, defined by means of e = €9 + €, pr = —€o9 + p,
where € and p correspond to the brane matter. Thus, the junction equations imply
the usual energy conservation on the brane,

de ‘
€ — 3%+ p (61)
dt ay

and the modified Friedmann equation (Binétruy et al., 2000a),

.\ 2 2
dap A4 1 € € k

= () =2, (EL )& 62
(ab> 3 +M12>1 <3+660> a? (62)

with the hierarchy

4
Myl = =20 63)
6
and the cosmological constant on the brane,
A4 K?é% 1
—===—-=). 64
3 < 36 2 (64)

The present density of the Universe is

€(0) = Qoe. = Q3M3, H,
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where 2 is the ratio between the density and the critical density of the Universe.
Aiming at the energy conservation, the Friedmann equation is

A ’ Q L k
H2=—4+90H§@(1+—° )——, (65)

3 al 41+ Aul2/3) al

S

with L = al > H.

We thus verify that there exist three phases in the evolution of the Universe.
When a;, > L., the linear term in the energy density prevails in the Friedmann
equation, leading to the standard cosmology. Because Hyl ~ 10~2° this happens in
aredshiftof ayo/ap ~ 10"%, much earlier than the nucleosynthesis. Fora;, < L the
Universe expands at a slower pace as compared to the standard model, a; o< 7'/9,
and the quadratic term is the prevailing one. In an intermediate era where a, ~ L.,
both phases coexist.

We see that all the cosmological information is already known: the position
of the brane in the extra dimension, a,(7), is just the scale factor of the FRW metric
and the junction conditions imply that the cosmological evolution of the brane is
obtained by the usual energy conservation (61) and the modified Friedmann equa-
tions (62). However, in this work we are particularly interested in the evolution of
the brane with respect to the bulk. This relation can be obtained using (53) and trans-
forming from the time of the brane to the time of the bulk. Thus, the position of the
brane can also be treated as a function of the bulk proper time satisfying the equation

dab _ d(lh drt — (‘L’) h(ab) (66)

de T dvde T Gy + an(oR

5. SOLUTIONS OF THE GEODESIC EQUATION
FOR A DOMAIN WALL

5.1. Type I Solutions

We define the type I brane solutions as those for which « = 8 = 0. Conse-
quently, the potentials become cosmological constants. The solution also has a
constant dilaton ¢ = ¢. A simple rescaling in the metric leads us to

ds®> = —U(R)dt> + U(R)"'dR?> + R*d22, (67)
with
2V,
UR) =k —2MR™ P - —_—0___p? (68)
(D —1)D -2)

which corresponds to a topological black hole solution in D dimensions with a
cosmological constant.

As discussed in Chamblin and Reall (1999), if the domain wall has positive
energy density (Vp > 0), the relevant part of the bulk spacetime is R < R(7),



816 Abdalla, Casali, and Cuadros-Melgar

which is the region containing the singularity. If it has negative energy density, the
relevant part is R > R(t), which is nonsingular unless the wall reaches R = 0.
The potential F(R) ruling the evolution of the scale factor is

k .
nm:z—Mkww—Aﬁ, (69)

where the effective cosmological constant on the domain wall is given by

A=t B, Y (70)
" D-2|D-1 8D-2)|"

We shall analyze each of the four cases presented in Chamblin and Reall
(1999). As we have previously stated, the equation of motion (47) has a solution
only when F(R) < 0. This is automatic if U (R) < 0, i.e., if 7 is a time coordinate;
therefore, we look for solutions with U (R) > 0. In fact, both conditions,

F(R)<0 and U(R)> 0, (71)

can coexist in some cases as we will see in what follows. To illustrate the following
examples, we have chosen D = 6 dimensions.

511. A>0,M>0

From the graph of U(R) (see Fig. 1) we can choose the initial condition for
the domain wall assuming that (68) describes an AdS—Schwarzschild bulk with
event and cosmological horizons when M > 0 and V;, > 0.

We thus choose the initial condition for the domain wall inside this region and
where r is a space coordinate. From Fig. 1 we notice that there are two small regions,
rg <r < 0.593 and 2.93 < r < r¢, where (71) holds. The results are shown in
Fig. 2. We see that for region I the geodesics follow the domain wall for a while
and then decouple falling into the event horizon. For region II all the geodesics
and the domain wall converge to the cosmological horizon r¢ independently of the
value of V.

512. A<0,M>0

This is an AdS—Schwarzschild bulk. The condition (71) is fullfilled inside a
very small range as we can see in Fig. 3(a). However, all the geodesics fall into
the event horizon after following some path on the brane (see Fig. 3(b)).

513. A>0,M<0

From Fig. 4(a) we choose the initial condition for the domain wall equation
of motion inside the region where (71) holds. As we can see from Fig. 4(b), the
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domain wall and the geodesics converge to the cosmological horizon r¢. However,
after some threshold initial velocity the geodesics diverge to the time-like naked
singularity.

514 A<0,M<0

Here (47) can only have a solution when k£ = —1. This is a topological black
hole in an asymptotically AdS space. From Fig. 5 we see that there is no solution
fulfilling (71) between event and cosmological horizons.

5.2. Type II Solutions
The type II solutions have « = 8/2 and k = 0. The metric is given by

UG = (1 + 0 (—amr= 24 72)
r) = rl4b — r 1+b -,
(D —1-5?
and the scale factor is
R() = rie, (73)
where
Vo e2b%o 1
A= d b=-8+D —2. 74
Do, 2/3 (74)
The potential is given by the expression
F(R) = —RXM=)(MR=P~170) 4 R), (75)
where
L e V Vi
A=2S O __+__°0 ). (76)
D-2\D—-1-b2 8D -2

There are 12 cases from which we choose those ones where 7 is a spatial
coordinate. When b?> < D — 1, is a spatial coordinate if V; < 0. When b% >
D —1,r isspatial if M < 0.

We should also rewrite (71) as

F@r)<0 and U(@)> 0. a7

521. A>0,M<0,b>>D—1

In this case U(r) is always positive, whereas F(r) is negative for small r.
From Fig. 6 we see that some microscopic shortcuts appear in the very beginning
of the solution and after crossing the domain wall they escape to infinity.
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522.A<0,M>0,b*< 1

This case describes a black (D — 2) brane solution in AdS space. Here there
is a very small region where (77) holds after the event horizon as we can see from
Fig. 7. We show the entire domain wall solution and see that geodesics follow it
and then fall into the event horizon at later times.

523.A<0,M>0,1<b><D—1

This case is also a black brane in AdS space. The region where (77) is respected
is shown in Fig. 8. As in the previous case all the geodesics follow the domain
wall and at later times fall into the event horizon.

524 A<0,M<0

As F(r) is always positive for all b2, no solutions to (49) exist.

5.3. Type III Solutions

The type III solutions have « = ﬁ. In this case, the metric is given by
U( ) (1 " b2)2 Lz M —]+b2(;)73) 2A (78)
r) = b 1+b —_ r 14b -],
(1+b%(D —3))
and the scale factor is
h2
R(r) = yrive, (79)
where y = (Zk(AD(l_jl);z))% . The values of A and b are the same as those given in (74).
The potential F(R) is
D - 3)p* R\~ P+
FRy= - D=9 “ iyt (R |
2k(1 — b2)(1 + b2(D — 3)) Y

‘70262%7/2 R _2(/%2_1)
8D -2y <?)

If Vo > 0, r turns out to be a time coordinate, while for V < 0, it is a spatial

coordinate. From the 12 cases shown in Chamblin and Reall (1999) we choose
those where it is a spatial coordinate. The condition (77) always applies.

(80)

530 Vo< 0,M>0,b* < o

This case describes a topological black hole in AdS space. From Fig. 9 we
can see the region where (77) holds. There are no shortcuts in this interval.
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532.V0<0,M >0, 5ty < b*< 1

We again have a topological black hole in AdS space. There is a small interval
where (49) has solution as we can see from Fig. 10(a). Our results are shown in
Fig. 10(b). Notice that the domain wall equation of motion has a solution only
inside the interval shown there. This means that only a group of geodesics with
initial velocity 7(0) > v, can meet the domain wall after a roundabout in the bulk.

533. Vo< 0,M>0,b>1

The black hole in AdS space appearing here has round spatial section. In
this case U (r) is always positive (then r is always a spatial coordinate); however,
we notice that F(r) < 0 forr > 3 x 10°. We found that shortcuts are possible for
several initial velocities if M = 0.

The case M > 0 is shown in Fig. 11. We have two regions of interest after
the event horizon depending only on the sign of F(r) since U () is positive in this
range. In the first region all the geodesics initially follow the brane and fall into
the event horizon at later times. In the second region we have shortcuts again for
several initial velocities.

534. Vo< 0,M < 0,b* < s

Here U(r) is always positive while F(r) is negative in the range shown in
Fig. 12. The domain wall and the geodesics diverge after some time near the end
of the range where (49) has a solution.

53.5. V0<0,M<O,ﬁ<b2<1

In this case U (r) is always positive while F'(r) is negative for a small range
as seen in Fig. 13. There are several shortcuts in the region where the domain wall
equation of motion has solution; nevertheless, there is a threshold velocity after
which the geodesics cannot return.

536. Vo< 0,M<0,b>>1

Now U (r) is always positive and F'(r) will determine the initial condition for
the domain wall equation of motion. Results are in Fig. 14.

5.3.7. Domain Wall Time and Time Delays

The time delay between the photon traveling on the domain wall and the
gravitons traveling in the bulk (Abdalla and Casali, 2002b) can be calculated as
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follows. Since the signals cover the same distance,

d dt, o (1)?
/i:/ ¢y — 20 @1)
r(fy) rg([g) L](rg)
the difference between photon and graviton time of flight can approximately be
written as
At s dr, ' odr,
= - e, (82)
r 0 r(Ty)  Jo 1(T)

or in terms of the bulk time

- UGy — @2 1 de
AT ~ )(ff)/ dt( e U(ry) Uey 1o dt)' (83)

The elapsed bulk time ¢, the corresponding domain wall time 7, and the delays
(83) can be computed.

6. A SIX-DIMENSIONAL MODEL

We consider a six-dimensional model, such as the one constructed by Kanti
et al. (2001). We also search for a solution of six-dimensional Einstein equation
in AdS space of the form

ds* = —n*(t,y, 2)dt* + a*(t, y, 2)d X} + b(¢, y, 2){dy* + (¢, y, 2)dz*}, (84)

where d Z,f represents the metric of the three-dimensional spatial sections with k =
—1, 0, 1, corresponding to a hyperbolic, a flat, and an elliptic space, respectively.

The total energy—momentum tensor can be decomposed in two parts corre-
sponding to the bulk and the brane as

T =Ty + 1y (85)
where the brane contribution can be written as

8(z — zo) . R
13" = === diag (~p. p. p. p. . 0). (86)

An analogous development of Section 3.3 for this six-dimensional model
provides the following Darmois-Israel conditions

[0:a] (6)

- —(p—=D+p,
aoboco
a.b Kt
e T )} (87)
bOCO
3. Kie
O 0430+ o)

bocono
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A metric of the form (84) satisfying six-dimensional Einstein equations is
given by

22

ds® = —h(z)dt* + l—sz,f +h7 Y (2)dz?, (88)
where here
2 dr? 2 162 )
d¥} = -7 +r2dQy, + (1 — kr?)dy?, (39)
and
2 M .
h(z) =k+ 1—2 - = for AdS—Schwarzschild bulk, 90)
=
2 M Q? . ..
h(z) =k + 7 +— for AdS—Reissner—Nordstrom bulk, (91)
z z

with /=2 o« —A (A being the cosmological constant), which describes a black hole
in the bulk, located at z = 0.

Following Cséki et al. (2001), we find a further solution by means of a Z,
symmetry inverting the space with respect to the brane position. That is, considering
a metric of the form

ds* = —A*(2)dr* + B*(2)d %3, + C*(2)dz* (92)
and the brane to be defined at z = z, there is a solution given by

A(z), B(z), C(2), for z <z,
2 2 2.\ % 93)
A(Z3/z), B(Z3/2).C(Z%/z)%, for zzo.
The Z,-symmetry corresponds to z — z3/z.
The static brane still has to obey the Darmois-Israel conditions (87), which
for the metric (88) are written as

[0.a] _ K

ajco 4 7

o.n K2
1l _K© 4, 4 3p), 94)
aopCong 4

where here

h'(z0)
Vh(zo)

[0;a] = —% and [0.n] = — 95)
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6.1. The Shortest Cut Equation
‘We consider a static version of the metric (84) with k = 0
ds®> = —n?(2)dt* 4+ a*@2) f2(r)dr® + b*(2)dy* + d*(z)d 2, (96)
where the graviton path is defined equating (96) to zero. Therefore,

/l‘ fohdr' = /t /i) — P - dZ(Z)szt
ro Iy a(z)

= / LLy@), (1), z(t), 2(t); tdt, C2))

which naturally defines a Lagrangian density. The Euler-Lagrange equations of £
define the graviton path. We first choose to work at a constant y to check on the
very possibility of (96) allowing shortcuts. In this case the resulting equation is
simple but far from trivial,

- a 2n/ L d\y ., L nn'  a' n? 0 (98)
Z ——2—+—z — ——— ) =0.
a n d d>  ad?

Notice that this case is equivalent to consider the problem in five dimensioins with
the metric shown in Cséki et al. (2001).

The most general case includes a y dependence on the graviton path; however,
this dependence turns out to be superfluous and does not affect the z-equation since
(98) is independently satisfied. This conclusion is not surprising if we notice that
the metric (96) is y-independent.

For k # 0 cases we can also consider (98) as the shortcut equation if we
assume the existence of a y-symmetry in our problem. Our model represents a
generalization of Cséki et al. (2001).

6.2. AdS-Schwarzschild Bulk

From the Darmois-Israel conditions (94) together with (95) we have

P
5=l (99)
Z5 64

h K(46)p2

— = 4o +3), 100
27 g et (100)

and we can obtain the black hole mass M as a function of the brane energy density
o, while p is fixed by a fine-tunning,

M 2k KioyP®
S =i (w4 D, 101
=52 (w+1) m (101)
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Kig)P* B 3k 5
64  2Bw+3) (Bo+3)

(102)

where w = p/p.

As we saw in the previous section, the shortcuts in six dimensions are deter-
mined from (98).

If a shortcut exists, there must be a time # = v in the graviton path when
z(v) = 0and Z(v) > 0. Thus, (98) evaluated at this point will give

h'(z,)  h(z,)
——— ] =0.
2 Zy

It is obvious that this minimum must be between the brane and the event
horizon z;, if a horizon exists. Otherwise, there is no turning point in the path

since the graviton cannot return after it goes through the event horizon. Hence,
h(z,) > 0. Thus, from (103) we require

W(zy)  hiz)

E(v) + h(zy) < (103)

F(z,) = B <0 for z,< z, < zgp. (104)
Zy
Using (90) this implies
SM k&
F(zy)=-———<0. 105
(@) =3 R (105)

This equation has a zeroinz =z # O fork # 0

23 = iM
P 2k
For k = 0, —1, there is no positive root. Since the mass is positive, F(z) > 0
everywhere preventing the coexistence of shortcuts and horizons.
On the other hand, for k£ = 1 there is one real and positive root, which must
satisfy z; < z to have shortcuts. Taking into account (101) and the fact that &2
must be positive in (102),* we have a first restriction for w,

w+1>0. (106)
The positivity of the black hole mass gives a second restriction for w,
3
—l<w< —-, (107)
4
and also for the brane position,
2 3/4
o _@F3/4 (108)
? w+1

4From now on, we will denoe ¢ = K(46),02 /64 in six dimensions.
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If we follow both (107) and (108) together with the fine-tunning for the energy
(102), we will have several shortcuts in AdS—Schwarzschild bulks with shielded
singularity. In Figs. 15 and 16 we illustrate an example with o = —4/5,z9 = 1/3,
and / = 1. Notice in Fig. 15 that the horizon appears before the brane.

Since this case is equivalent to consider the problem in five dimensions with
h(z), M, and p givenin Csdki et al. (2001), analogous results are obtained (Abdalla
et al., 2002a).

6.3. AdS—Reissner—Nordstrom Bulk

From the Darmois-Israel conditions (94) we have for the black hole mass and
charge,

M 2 8 K&

ZS N zé +312+ 24pa),

0 k 5  Sw+3kgp

=4 : 109
zg zé + 312 + 3 64 (109)

At this stage it is convenient to carefully study the possibility of existence of
shortcuts for every value of k.

As it was found in the AdS—Schwarzschild case, (104) determines the exis-
tence of shortcuts. Using (91) we see that (104) has a zero in z = z; # 0 when

5
5Mz§ —40% —kz$ =0. (110)

0.51

0.1
h(z) z

-0.51

Fig. 15. h(z) in six-dimensional AdS—Schwarzschild bulk with the brane located at
z = 1/3. Notice that the singularity is shielded by a horizon.
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Fig. 16. Shortcuts for several initial velocities in six-dimensional AdS—Schwarschild bulk. Notice
that there is a threshold initial velocity for which the graviton cannot return to the brane and falls
into the event horizon.

If kK = 0, we have a real root in

80
3
P = = 111
Zy sM ( )
If k = 1, we have two roots in
5 1
3
=M=+ —\/25M? — 6402, 112
= ME 0 (112)
Finally, if k = —1, we have
5 1
7} = —ZM + Z 25M2 + 6402 (113)

Notice that F(z) has at most one real and positive zero if k = 0, —1, and at
most two positive zeros if k = 1.

Analyzing /(z) and its derivatives, we conclude that for positive mass there
is just one zero for /4’'(z), and hence, at most two horizons for 4(z).

When there is one horizon, 4’(z) is negative before it and positive after,
crossing /(z) at the very horizon. If there are two horizons, 4’(z) vanishes at a
point between Cauchy and event horizons, being negative before this point and
positive after, while A(z) is positive at all points except between both horizons.
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Taking into account both the sign and zeros of these functions, /'(z) between the
Cauchy horizon and the point at which #’(z) vanishes.

Since h'(z)/2 has the same sign as /#’(z) and vanishes at the same point, and
in the same way /(z)/z has the same sign of 4(z) and vanishes at the same points,
we conclude that, existing horizons, F(z), necessarily vanish at some point z = z
such that 0 < z. < z;,. However, as we pointed out before, for k =0 or k = —1
there is only one positive root of F(z). As F(z) < Oforz < z., then F(z) > O for
z > z.. Thus, because z. < z,, F(z) > 0for z > z; contrary to what was required
in (104). This implies that there are no shortcuts with k = 0 or k = —1 when
horizons exist.

In five dimensions the proof is very similar and we arrive to the same con-
clusion. In the case k = 1F(z) has two real, positive, and distinct roots,

5 1
ri=>M— —\/25M? — 6402, (114)

4 4
5 1
@:ZM+szﬂ—MQ. (115)

This is the only situation where the shortcuts can coexist with a shielded singularity.
In fact, this situation necessarily requires the second root of F(z) being at some
point before the brane position zy. This also implies F(zp) < 0.

In addition, we must have both Q2 and M positive.

Given the fact that we have horizons, if the brane is not between them or at
a horizon position, /(z¢) > 0. Furthermore, to guarantee that the brane is located
after the event horizon, we also need /'(z¢) > 0.

From the previous discussion we will have one or two horizons if and only if
h(ry) <0.

In summary, shortcuts in bulks with shielded singularities can occur only if
k = 1 and also if the following conditions are supplied:

1. h(zo) > 0and h'(zg) > 0 to have both horizons before the brane;

2. F(z9) < 0and r, < zg to have shortcuts with shielded singularity;

3. 0? > 0and M > 0, which assures the positivity of the black hole mass
and the square of the charge; and

4. h(r1) < 0to have horizons.

As we have done for the Schwarzchild case, we can analyze each condition
and impose certain restrictions on w, p2, and zo. In short, by purely analytic con-
siderations we conclude that shortcuts in bulks having no naked singularities and a
static brane embedded in can only appear if £ = 1 and if the following conditions
are satisfied (Abdalla et al., 2002a):

1. we must choose w such that —1 < w < —3/4;
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2. given w, the brane must be located at a position such that

1/ 3+4
Z_°< z _g, (116)
l 2 l+ow

which is the same condition as AdS—Schwarzschild case (108); and
3. given (116), the energy ¢ must satisfy

1 32a)z% z% Z(z) )
2\ "2 +9+3\/—64wl—2+9—64l—2a)
1 522
2.2 0
< < -3-—. 117
0% S 8wt 3 ( 2 ) (17
In this way, it turns out to be simple to find shortcuts in bulks with shielded
singularities.
As an example, let us choose w = —9/10. From (116) we must have
Zo \/6
/ 2’

then we choose/ = 1 and zp = 1.
From (117) we have

35
24

so we choose ¢ = /238/125.

In Fig. 17 we plot h(z) with these conditions. Notice that the singularity is
protected by an event horizon and the brane is at z = zg = 1.

In Fig. 18 we plot the graviton paths obtained from (98) under the previous
conditions for a variety of initial velocities showing that, in fact, shortcuts appear
when we choose the parameters following the complete analysis shown in this
section.

The analysis in five dimensions can be performed analogously.

5 40
V4l < g2 < —
tn &S o

7. THE FRW-BRANE EVOLVING IN THE BULK

The main reason to study the evolution of the brane from the point of view of
the bulk is to simplify the analysis of gravitational signs leaving and subsequently
returning to the brane. In fact in the static AdS background (51), the FRW brane
(54) has a particularly simplified equation for a null geodesic in the bulk, a = a(t)
(Abdalla et al., 2002a),

ait)  a*@) 3h'(a)a h(a) (W(a) hY\
- T2 <1_ 2h(a)>+7< 2 _2)_0' (118)
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Fig. 17. h(z) in six-dimensional AdS—Reissner—Nordstrom bulk with the brane
located at z = 1. Notice that the singularity is shielded by two horizons.
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Fig. 18. Shortcuts for several initial velocities in six-dimensional AdS—Reissner—Nordstrom bulk.
Notice that there is threshold initial velocity for which the graviton cannot return to the brane and
falls into the event horizon.
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On the other hand, the evolution of the brane in the bulk, a = a,(¢), at early

times, a, < L., is dictated by (66),
, —1/2
da h(a k+ %
—bzﬁzh(ab) 1l+——F" i

dt [ hiap) QL
I+ ap()? 4(1+12A4) 2a?
where we used the fact that the quadratic term in the energy prevails. Thus,

2 -1/2
day _ h(a,,)(l + w % S(1+ ki /(a,,))) ,
Q5 L

dt
and since the observed cosmological constant is at most A4 ~ HE, A4l* < 1, we
have for a;, < L.,

day 201+ PAy) a’ o

Substituting the result for the evolution of the brane, a(z) = h(a), in the
geodesic Eq. (118), we verify that it is satisfied. Therefore, the trajectory of the
brane differs from the trajectory of the null geodesic by a term of the order (“” )%,

This means that for @, < L., the trajectory of the brane in the bulk is governed

by
dap(t) a,%
—— =k + —=. 120
dt + 2 (120)
Thus, if k =0,
ap(0)1?
H)y= —— 121
ap(t) 12— a0yt (121)
and, if k = —1,
21(1 0
ap(t) = (¢ +2,(0) —1. (122)

2/l — ap(0)) + I + ap(0)

In this last situation, if the Universe begins under the Randall-Sundrum scale,
a(0) < [, it will recolapse to the singularity in a finite time,

l I+ a,(0)
t=—In{———.
2 [ — ap(0)
There is an event horizon whena = [ if k = —1.
In the case of an elliptic Universe,

ap(t) = ltan (% +tan~! (abl(O))> . (123)
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Starting at the singularity o = 19 = a(#p) = 0, we have

ap(t) = [ tan (;) . (124)

Note that the evolution of the brane in the bulk is linear near the initial singularity
(a(t) ~ t for t K1), diverging at the critical time . = /. In fact, the behaviour
of all solutions is similar near the critical time

12

ZC = _7

ap(0)

[ I
te = — In Lb(o) s

2 ap(0) —1

0

te = %l — 1 tan”! (abl( )>, (125)

for k = 0, —1, +1, respectively.

As we approach the critical time, a,(¢) increases quickly. When a,(t) ~ L,
Eq. (120) is no longer valid, and the trajectory of the brane is no longer a geodesic.
Thus, for a very short period, from the point of view of the bulk the brane undergoes
a phase transition. Before the critical time, from the point of view of the bulk, there
is no time left for the remaining graviton geodesics to reach the brane.

For later times the evolution of the brane is softer, and shortcuts should
appear. In fact, the numerical solutions of the brane evolution Eq. (66) and the
null geodesics Eq. (118) in the bulk indicate the presence of shortcuts in late times
universes, as exhibited in Fig. 19.

7.1. The Effect of Shortcuts in Late Times Universes

The shortcuts just found for late times Universes could be used to probe
the extra-dimensionality by the aparent violation of causality on the brane. Thus,
suppose that in T = ¢t = 0 an object could emit eletromagnetic and gravitational
waves and that we could be able to detect both signs in times ‘L'),/ and 7,'2,, respectively.
We compute now the order of magnitude of the advance in time of the graviton.
Since the signals cover the same distance on the brane,

/fé dr, (% di, h(a)_a(zg)z' (126)
o an(ty) Jo alty) h(a)

Here a denotes the coordinate defining the geodesic in the bulk and differs from
the coordinate of the brane a,. In terms of the dimensionless parameters y and
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Fig. 19. The trajectory of the brane in the bulk for €2¢ = 2, matter dominated era (MDE) with k = 1.
Also null geodesics starting in the brane with various initial velocities.

x,a = Ly and t = T x the last integral reads

o dt i(1)?  dt 12 2 y(x)?
/ 8 h(a)—a()zfg—g 1+ 22——2L)L2. (127)
o alty) h(a) o ! L2y T2 y2 4yt L
Using the relation between the time on the brane and that in the bulk, we express

the above expression in terms of the time interval of the observer on the brane, and
together with the Friedmann equations, we get

/‘”& ! y§L2+A4L2y§+ S ) S0P
o [ hp\ I* ylm12La2 L2y T2 )24 yals

Wodr, 1 Qo L¢ 2P y?
= —— 14+ PAs+ —— [1+ - — )
/o ap(te) 1 + 2 \/ yZ L4 L2y? T2 y2+y4%

L2y}
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If L > L. > I, we obtain, at second order in L./L and //L,
[ [P Sy P
o a(t,) Jo ap(ty) 2y, L1 2 L*yj

! L2 1 % y()?
202y2  2T2L2 A

Thus, at first order, the time difference between the photon and the grav1t0n 1s
corrected in the integrand by terms of order & C . Today this factor is at most 1073
and in the time of decoupling 1046 showmg that the time advance of the graviton
can be safely neglected and is of no physical significance, in spite of the fact that
the trajectory of the brane is distinctively different from the null geodesic.

7.2. The Effect of Shortcuts in The Early Universe

From the analysis developed so far we learned that the periods of evolution
of the Universe differ by the scale that defines the physical significance of the
shortcuts. When a;, < L, the trajectory of the brane in the bulk differs from the
extreme geodesics by (a,/L.)* and the shortcuts do not appear since the brane
itself provides the graviton geodesic.

In the period when a; > L., the trajectory of the brane is far from a null
geodesic and shortcuts appear, but they are not significant since the skin depth of
the graviton in the bulk is defined by the parameter / <« L. < ay. The difference
between the time intervals of the photon and the graviton is of the order (L./ap)?.

However, from the continuity of the evolution of the brane in the bulk, we
expect that there is also an intermediate situation a, ~ L. when physically impor-
tant shortcuts could appear since the evolution of the brane is far enough from a
geodesic. Indeed, in Fig. 20, rescaling the geodesics in the bulk, we can observe
the behaviour of the brane as compared to the geodesics that start on it at a later
time. It is clear that these shortcuts are serious mediators of homogenization of
the matter on the brane in the era before nucleosynthesis (Caldwell and Langlois,
2001; Ishihara, 2001).

From the evolution of the brane in the bulk in the intermediate epoch we thus
conclude that there is a critical age ., after which the gravitational waves leaving
the brane return before the arrival of the photons released at the same time as
the gravitons. The behaviour of the geodesic in the bulk shows that any geodesic
starting on the brane at a certain instant will be singular at a time later than the
critical time, indicating that it will return to the brane. Thus, information leaks
between regions which apparently are causally disconnected at times ¢ > ¢.

To study the horizon problem, we now compare, at a certain time t,, previous
to nucleosynthesis, the graviton horizon R, with the observable proper distance
of the universe (from the radiation decoupling until today (Chung and Freese,
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Fig. 20. The trajectory of the brane in the bulk leaving @ = 0.01 L. in the RDE. Geodesics in the bulk
with different initial velocities are exhibited intercepting the brane after the critical time .

2000a,b). Since the graviton evolves in a bulk geodesic,

R / dr /dt ra) a2 /dr Vhia) +dj /
= _— = — a)— — =
¢ N1 —kr? a h(a) h(ap) h( )
dt 1 Q()Lg Q()Lg )
= S 14 A2 1
/0 ap 1+12/a,3\/ A ( T 0+ AP

[2 12 - 2
x 14— — y(x)u, (128)
Loym T2y + 5

while on the brane, the size of the observable Universe is R = f
We use the known results for the usual particle horizon

ap(t)”

1 [Z(O) 2
R= ——— z71%dz = (z(0)'79% — z(0)179/%),
v QoHoapo Jzr) (g — 2)+/Q0Hoamo
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where z(1) = apo/ap(t). Today,

2
R~—"" =R
/S0 Hoapo

For the computation of the graviton horizon we work in a primordial era
before nucleosynthesis. Thus, in the Friedmann equation we can neglect the usual
cosmological term as well as the curvature term. At an epoch between Planck era
and nucleosynthesis, / < a;, < Hy, it is safe to neglect term involving /?/L? in
(128), and we find

w dt QL! QLY
Rg ~ — |1+ q + 2q
0o @ a, 4abq

Using the Friedmann equation, we get

272
L e g (1 B
§= A / ST (129)
Q' “Hoapp Jz(r,) 2 1+ S0 H;! 74

4

The integral diverges for arbitrarly high redshifts, proving that the horizon
problem is potentially solvable. The behaviour of this integral can be determined,

/
R, ~ —z(0).
apo

Comparing with the size of the Universe today, we have

R,

~

Ro 2

Holz(0).

It looks like shortcuts are not enough to solve the horizon problem since we
would need to go back in time to z(0) ~ (Hol)~' ~ 10?°, 10! times higher than
the redshift at the Planck time on the brane associated with the fundamental scale
of gravity, k.

We may note, however, that there are actually two related times scales. In
the primordial Universe the brane is evolving as a part of the bulk, with velocities
close to that of light, and time intervals on the brane correspond to much longer
intervals in the bulk. In fact, the relation between these scales is obtained from
to = 10 = ap(t9) = 0 and

©  Jh(ap) + ai(z)
l:f dt ——mM—.
0

h(ap)
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For a, « L. we have t <« [, and one finds as a consquence

/‘ T ap(o) / @O day,
=~ drt = T 2
0 h(ap) 0 k+a;/l?

This implies for the example of a closed universe with 2y = 2,
t=1 arctan(abgt))

Therefore, when a,(t) ~ [, that is, when the brane time is  ~ 10~%s, the
corresponding bulk time ¢ ~ Z/ ~ 10~ s is much larger than the Planck scale,
13> Mg

If we assume that quantization is mandatory according to the bulk Planck
energy scale, geodesics that start in the bulk with z(0) ~ (Hy/)~! should be suf-
ficient to homogenzie the Universe before nucleosynthesis reaching R, ~ 1. To
verify this, let us note that we can study analytically the whole causal structure of
the gravitational sings for a k = 0 Universe.

The geodesic Eq. (118) is quite simple for purely AdS k£ = 0 space-times

1 da v(0)

ar dt  a(0)

Thus, a geodesic that starts on the brane at @ = a(0) and ¢ = 0, with initial
velocity v(0), returns to it when

(130)

_a(0)
~ o

The expression for the gravitational horizon can also be integrated

" dt a2 " dt\/w
’e= W““*m% TV T
_ w0 (131)
o a(0)*

Using the relation between the returning time and the initial velocity,

t, 9

To relate the returning time to the redshift, we must integrate the relation
between time of the bulk and time of the brane (66). We already know that from
a(0) to the critical period of transition a time of 7, ~ % has passed. After that,
the evolution is dominated by the usual term in Friedmann equation and we can
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use

12 ar dab 12 ar l 2-2
i~ ——=+ l—%—+/ d a/
a(0) /L 2H a0 ) T,

? 21
N~ 4 z /2 107, (133)
a0) (g — 2)v/Q0Hoay0 ( )
where z, must, of course, be greater than the redshift in the transition, z; . ~ 103,
Substituting back in the expression of the gravitational horizon,

/ 2
R — | — + Z;q/2+1 _ 1015 i|
¢ [a(O) (¢ — 2)v/Q0Hoano ( )

8 \/1 B [1 N 2a(0) (qu/2+1 _ 1015)}2 (134)
(¢ — 2)v/S0l Hoayo * .

When considering the interesting situation of a high initial redshift z(0) =
apo/a(0) > (Hol)™!, this expression can be approximated by

/ 4a(0) —gq/2+1
R~ —0/2+1 _ g1s) 135
8 0(0)\/(CI — 2)/Q0l Hoayo = ) (3

Comparing with the size of the horizon today, we find

& ~ [Ho -q/2+1 _ 1n_15
<R0)zrwm\/z(0)(” 10-13). (136)

Thus, as we have previously noted, if sufficiently large redshifts were avail-
able, the graviton horizon in a past epoch could be larger than the present size of
the observable Universe.

We argue, however, that those high redshifts could be available. Indeed, if
inflation takes place on the brane, high redshifts could be present in the beginning
of the inflationary epoch.

Denoting the redshift when inflation ends by z,, if the size of the present
Universe, Ry, is expected to be in causal contact during inflation, we must reach
at least a redshift in the beginning of inflation, z(0), that solves

~

apoRo
z(0)
The unusual results in brane-world cosmology are expected if inflation ends

before the transition time, when the quadratic term in Friedmann equation domi-
nates. In this case we get

= Hﬁl(Ze).

aboRo 1 4
_ d 20) = 24/ Holz*. 137
200 QHZ 20) 00tz (137
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If H(z,)! > 1, it is simple of note from Eq. (66) that the evolution of the
brane in the bulk is not altered during inflation. Thus, we can substitute the result
(137) in the complete expression for the causal gravitational horizon (136),

Rg) 290 2 —q/2+1
2] = Hylz:+/ (zr — 10-15). (138)
(Ro . V@-2" Vi )

This equation says that in the time of nucleosyntesis, when z, ~ 10'°, R,/
Ry ~ 1, for a model with inflation ending just before what would be the Planck
era with z, ~ 10'7 (where zp; ~ 10'®). This proves that successfully inflationary
models ending before the transition time necessarily make relevant changes in the
causal structure of the universe.

We are able to sketch the gravitational horizon for this kind of configuration.
In Fig. 21 we show the behaviour of the Hubble horizon in comoving coordinates
H 'a, ! /Ry and the graviton horizon R ¢/ Ro for an inflationary model ending just
before the Planck era, z, = 10'7 and producing the necessary number of e-folds
to solve the horizon problem. The fraction of the Universe in causal contact by
gravitational signs in the nucleosynthesis epoch is just the present horizon Rj.
Today, the gravitational horizon would be 10°Ry.

8. CONCLUSIONS

We have shown that gravitational shortcuts in three braneworld models are
common and there are many consequences.

In the brane wall model, where the Universe is replaced by a domain wall, we
have proved that shortcuts may exist and above all abundant, which is a necessary
condition to solve the homogeneity problem. The model shows interesting results
as the delay of the time of flight inside the brane that can be comparable with the
time of flight of the graviton itself. This lends further support for a thermalization
via graviton exchange through the extra dimensions.

In the brane static models, the AdS—Schwarzschild and AdS—Reissner—
Nordstrom bulks also open up the possibility of having shortcuts provided both
the spatial section has positive curvature and a set of strong restrictions on the
brane intrinsic tension must be satisfied. Moreover, its location in the bulk has to
be respected. It is interesting to notice that despite the fact that the charge con-
tributes to have a negative F(zo) and thus facilitates the existence of shortcuts,
there are more restrictive conditions for the energy coming from Q2 > 0 and from
the horizons equation which do not appear in the uncharged case. In this way, the
results favor the existence of shortcuts in bulks with shielded singularities with the
same conditions for and z as the AdS—Schwarzschild case and also impose what
is basically a fine-tunning in the energy that already exists in the uncharged model
directly from the junction conditions.
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Fig. 21. We plot in log—log scale the evolution of the fraction of graviton horizon and the present
observable size, Rg/Ro (dashed line) and the same for the Hubble horizon a,:l H~'/Ry (solid line),
for an inflationary model in the brane that ends after Planck time (up;, = —log(zpr) = —18), and
before transition time (utr = —15), in tteng = — log(zeng) = —17. The present scale would be under
the de-Sitter horizon if redshifts like #(0) = —39 were available. This implies in strong modifications
of the causal structure for gravitational sings after the transition time.

Finally, studying the shortcut problem in the cosmological braneworld model
from the point of view of the bulk, we have explicitly shown that shortcuts are
indeed common in late time Universes, although they are extremelly small and
the time advance of the graviton can be safely neglected. However, we have also
learned that gravitational sings may leave and subsequently return to the brane
even in early universes. We have shown that those shortchuts exist and that the
new scale of the model, /, implies in a minimum time scale for the reception of
those signs by an observer on the brane. Before that critical time the brane itself
evolves like a null-geodesic in the bulk. If high initial redshifts were available,
the shortcuts just found could solve the horizon problem without inflation. More
important, however, may be the effect of those shortcuts in an inflationary epoch
on the brane.

Braneworld models incorporate two changes in the cosmology, namely, the
modified Friedmann equation and the possibility of leaking of gravity in the extra



Shortcuts in Cosmological Branes 853

dimension. Using the first of those modifications, it was shown that, remarkably,
the consistency equation is mantained in the brane-world formalism when the
inflation is guided by a scalar field minimally coupled on the brane (Heley and
Lidsey, 2001; Liddle and Taylor, 2002). This consists in bad news for those who
expect that brane cosmological configurations could probe the extra dimensionality
of our Universe.

However, we have shown that with an inflationary epoch in the brane evolution
the causal structure of the universe could be strongly modified. This could be a sign
of an unusual evolution of the perturbations from the time they cross the de Sitter
horizon, H !, during inflation, through the time they became causally connected
again. In this case, there could be distinct predictions for the microwave background
radiation structure even with the same consistency equation during inflation. Thus,
further investigation on the dynamics of perturbations in inflationary braneworld
models may prove useful to probe the dimensionality of space-time.
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